Контакты

Зашифровать номерной бланк. Шифры, их виды и свойства

определить неизменяемые части. Забегая вперед, можно привести в качестве примера шифрмашину "Энигма" (см. главу 9), которая содержала несколько колес; внутри этих колес были провода; распайка проводов внутри колес не менялась, но ежедневно изменялся порядок расположения колес внутри самой машины. Таким образом, распайка проводов являлась неизменяемой частью, а порядок колес - переменной. Взлом системы - это самая трудоемкая часть работы; она может продолжаться несколько недель или даже месяцев и потребовать применения математических методов, поиска и использования ошибок операторов и даже сведений, добытых шпионами.

После того, как определены все неизменяемые части системы, необходимо определить все переменные части (такие, как начальные положения колес в шифрмашине "Энигма", которые менялись для каждого сообщения). Это - задача вскрытия ключей сообщения . После ее решения сообщения будут дешифрованы.

Итак, взлом относится к системе шифрования в целом, а вскрытие ключей связано с дешифрованием отдельных сообщений.

Коды и шифры

Хотя слова код и шифр часто употребляются нестрого, мы проведем разграничение между этими понятиями. В коде часто встречающиеся элементы текста (которые могут состоять из одной или более букв, чисел или слов) обычно заменяются четырьмя или пятью буквами или числами, которые называются кодовыми группами и берутся из кодовой книги . Для особенно часто употребительных выражений или знаков кодовая книга может предлагать несколько кодовых групп . Это делается для того, чтобы криптограф мог варьировать ими с целью затруднить их идентификацию. Так, например, в четырехзначном цифровом коде для слова "понедельник" могут быть три альтернативные кодовые группы - к примеру, 1538, либо 2951, либо 7392. Коды мы рассмотрим в главе 6.

Коды - это частный случай системы шифрования , однако не все системы шифрования являются кодами . Мы будем использовать слово шифр по отношению к методам шифрования , в которых используются не кодовые книги , а шифрованный текст получается из исходного открытого текста согласно определенному правилу. В наше время вместо слова "правило" предпочитают пользоваться словом "алгоритм ", особенно если речь идет о компьютерной программе. Различие между понятиями кода и шифра иногда не совсем четкое, особенно для простых систем. Пожалуй, можно считать, что шифр Юлия Цезаря использует одностраничную кодовую книгу, где каждой букве алфавита сопоставлена буква, стоящая в алфавите на три позиции далее. Однако для большинства систем, которые мы рассмотрим, это отличие будет довольно четким. Так, например, "Энигма", которую часто

ошибочно называют "кодом Энигма", безусловно является вовсе не кодом , а

шифрмашиной.

Исторически сложилось так, что вплоть до сравнительно недавнего времени в криптографии преобладали две основные идеи, и многие системы шифрования (в том числе почти все из описанных в первых одиннадцати главах этой книги) были основаны на одной из них или на обеих сразу. Первая идея сводилась к тому, чтобы перетасовать буквы алфавита (как обычно тасуют колоду карт) с целью получить нечто, что можно рассматривать как случайный порядок, перестановку или анаграмму букв. Вторая идея состоит в том, чтобы преобразовать буквы сообщения в числа (например, положив A=0, B=1, ..., Z=25), и затем прибавлять к ним (число за числом) другие числа, называемые гаммой , которые, в свою очередь, могут быть буквами, преобразованными в числа. Если в результате сложения получается число, большее чем 25, вычтем из него 26 (этот способ называется сложением по модулю 26). Результат затем преобразуется обратно

в буквы. Если числа, прибавляемые к тексту, получены при помощи довольно трудно предсказуемого процесса, то зашифрованное таким способом сообщение очень трудно, или даже невозможно дешифровать без знания гаммы.

Любопытно отметить, что шифр Юлия Цезаря, каким бы незамысловатым он ни был, можно считать примером и того, и другого типа. В первом случае наше "тасование колоды" эквивалентно простому перемещению последних трех карт в начало колоды, так что все буквы смещаются вниз на три позиции, а X, Y и Z оказываются в начале. Во втором случае гаммой является число 3, повторенное бесконечное число раз. Нельзя себе и представить ничего "слабее" такого гаммы.

Перевод сообщения на другой язык, пожалуй, тоже можно было бы считать определенным видом шифрования с использованием кодовой книги (то есть словаря), но это всё-таки слишком вольное употребление слова код . Однако такой способ перевода на другой язык, когда за каждым словом лезут

в словарь как в кодовую книгу, определенно не следует рекомендовать. Это известно каждому, кто пытался изучать иностранный язык. *) С другой стороны, иногда вполне резонно воспользоваться малоизвестным языком для передачи сообщений, актуальность которых ограничена во времени. Рассказывают, например, что во время второй мировой войны в американских войсках в Тихом океане в качестве телефонистов иногда использовали солдат из индейского племени навахо, чтобы те передавали

*) Вспоминаю, как некий школьник писал сочинение на французском языке о том, как в средние века один путешественник приезжает ночью в гостиницу и стучится в дверь. В ответ он слышит "What Ho! Without." ("Какого чёрта! Убирайся!" - прим. перев. ). Это выражение школьник перевел на французский дословно, подставив французские слова: "Que Ho! Sans." (получилось "Что за хо! Без." - прим. перев. ).Учитель французского языка, прочитав это, потерял на мгновение дар речи, а потом заметил; "Вы, наверно, нашли эти слова в словаре, который раздают бесплатно с мешками сахара".

сообщения на своем родном языке, вполне обоснованно допуская, что даже в случае перехвата телефонных переговоров противник едва ли нашел бы в своих рядах человека, владеющего этим языком и способного понять содержание сообщения.

Другой способ скрыть содержание информации - использовать некую персональную скоропись. Этим методом еще в средние века пользовались авторы личных дневников - например, Самюэль Пепис (Samuel Pepys). Такие коды нетрудно вскрыть, если записей в дневнике достаточно. Регулярные повторения некоторых символов (к примеру, знаков, обозначающих дни недели) служат хорошим подспорьем для прочтения некоторых слов и выражений. Примером более основательного труда может послужить дешифрование древней микенской письменности, известной как "линейное письмо Б", где знаки соответствовали слогам древнегреческого языка; заслуга дешифрования этого вида письменности принадлежит Майклу Вентрису*) (см. ).

Широкое распространение компьютеров и возможность практического построения сложных электронных микросхем на кремниевых кристаллах произвели революцию как в криптографии, так и в криптоанализе. В результате некоторые современные системы шифрования основываются на передовых математических концепциях и требуют солидной вычислительной и электронной базы. Поэтому в докомпьютерную эпоху пользоваться ими было практически невозможно. Некоторые из них описаны в главах 12 и 13.

Оценка стойкости системы шифрования

Когда предлагается новая система шифрования, то очень важно оценить ее стойкость ко всем уже известным методам вскрытия в условиях, когда криптоаналитику известен тип используемой системы шифрования, но не во всех деталях. Оценивать стойкость системы шифрования можно для трёх разных ситуаций:

(1)криптоаналитику известны только шифрованные тексты;

(2)криптоаналитику известны шифрованные тексты и исходные открытые тексты к ним;

(3)криптоаналитику известны как шифрованные, так и открытые тексты, которые он сам подобрал.

Первый случай отражает "типичную" ситуацию: если в этих условиях систему шифрования можно вскрыть за короткое время, то пользоваться ею не следует. Вторая ситуация возникает, например, если одинаковые сообщения шифруются как по новой системе, так и по старой, которую

*) Линейное письмо Б (Linear B) - одна из наиболее древних систем греческой письменности. Обнаружено на глиняных табличках в Кноссе (о. Крит) и в Пилосе. Расшифрована Майклом Вентрисом (1922-1956), английским архитектором и лингвистом (прим. перев. ).

криптоаналитик умеет читать. Такие ситуации, относящиеся к случаям серьёзного нарушения правил защиты информации, происходят весьма часто. Третья ситуация возникает, главным образом, когда криптограф, желая оценить стойкость созданной им системы, предлагает своим коллегам, играющим роль противника, вскрыть его шифр и позволяет им продиктовать ему тексты для зашифрования. Это - одна из стандартных процедур проверки новых систем. Очень интересной задачей для криптоаналитика - составить тексты так, чтобы после их зашифрования получить максимум информации о деталях системы. Структура этих сообщений зависит от того, как именно производится зашифрование. Вторая и третья ситуации могут также возникнуть, если у криптоаналитика есть шпион в организации криптографа: именно так обстояло дело в 30-х годах прошлого века, когда польские криптоаналитики получили открытые и шифрованные тексты сообщений, зашифрованных на немецкой шифрмашине "Энигма". Система шифрования, которую невозможно вскрыть даже в такой ситуации (3), является действительно стойким шифром. Это именно то, к чему стремится криптограф, и чего страшится криптоаналитик.

Коды, обнаруживающие и исправляющие ошибки

Другой класс кодов предназначен для обеспечения безошибочной передачи информации, а не для сокрытия ее содержания . Такие коды называются обнаруживающими и исправляющими ошибки , они являются предметом широкомасштабных математических исследований. Эти коды с самых первых дней существования компьютеров используются для защиты от ошибок в памяти и в данных, записанных на магнитную ленту. Самые первые версии этих кодов, такие, например, как коды Хэмминга, способны обнаружить и исправить единичную ошибку в шестиразрядном символе. В качестве более позднего примера можно привести код, который использовался на космическом корабле "Маринер" для передачи данных с Марса. Созданный с учетом возможного значительного искажения сигнала на его долгом пути к Земле, этот код был способен корректировать до семи ошибок в каждом 32-разрядном "слове". Простым примером кода другого уровня, обнаруживающего , но не исправляющего ошибки, является код ISBN (International Standard Book Number - Международный Стандартный Книжный Номер).Он состоит из десяти знаков (десяти цифр либо девяти цифр с буквой X на конце, которая обозначает число 10), и позволяет осуществить проверку на отсутствие ошибок в номере ISBN. Проверка выполняется следующим образом: вычислим сумму

(первая цифра) 1+(вторая цифра) 2+(третья цифра) 3+...+(десятая цифра) 10.

Методы: объяснительно-иллюстративный, частично-поисковый.

  • Создать условия для повышения познавательного интереса к предмету.
  • Способствовать развитию аналитико-синтезирующего мышления.
  • Способствовать формированию умений и навыков, носящих общенаучный и обще интеллектуальный характер.

Задачи:

образовательные:

  • обобщить и систематизировать знания основных понятий: код, кодирование, криптография;
  • познакомится с простейшими способами шифрования и их создателями;
  • отрабатывать умения читать шифровки и шифровать информацию;

развивающие:

  • развивать познавательную деятельность и творческие способности учащихся;
  • формировать логическое и абстрактное мышление;
  • развивать умение применять полученные знания в нестандартных ситуациях;
  • развивать воображение и внимательность;

воспитательные:

  • воспитывать коммуникативную культуру;
  • развивать познавательный интерес.

Предлагаемая разработка может быть использована для учащихся 7–9 классов. Презентация помогает сделать материал наглядным и доступным.

Общество, в котором живёт человек, на протяжении своего развития имеет дело с информацией. Она накапливается, перерабатывается, хранится, передаётся. (Слайд 2. Презентация)

А все ли и всегда должны знать всё?

Конечно, нет.

Люди всегда стремились скрыть свои секреты. Сегодня вы познакомитесь с историей развития тайнописи, узнаете простейшие способы шифрования. У вас появится возможность расшифровать послания.

Простые приемы шифрования применялись и получили некоторое распространение уже в эпоху древних царств и в античности.

Тайнопись – криптография - является ровесницей письменности. История криптографии насчитывает не одно тысячелетие. Идея создания текстов с тайным смыслом и зашифрованными сообщениями почти так же стара, как и само искусство письма. Этому есть много свидетельств. Глиняная табличка из Угарита (Сирия) – упражнения обучающие искусству расшифровки (1200 год до н.э.). “Вавилонская теодицея” из Ирака – пример акростиха (середина II тысячелетия до н.э.).

Один из первых систематических шифров был разработан древними евреями; этот метод называется темура - “обмен”.

Самый простой из них “Атбаш”, алфавит разделялся посередине так, чтобы первые две буквы, А и Б, совпадали с двумя последними, Т и Ш. Использование шифра темура можно обнаружить в Библии. Это пророчество Иеремии, сделанное в начале VI века до нашей эры, содержит проклятие, всем правителям мира, заканчивая “царем Сесаха” который при дешифровки с шифра “Атбаш” оказывается царём Вавилона.

(Слайд 3) Более хитроумный способ шифрования был изобретён в древней Спарте во времена Ликурга (V век до н.э.) Для зашифровывания текста использовалась Сциталла - жезл цилиндрической формы, на который наматывалась лента из пергамента. Вдоль оси цилиндра построчно записывался текст, лента сматывалась с жезла и передавалась адресату, имеющему Сциталлу такого же диаметра. Этот способ осуществлял перестановку букв сообщения. Ключом шифра служил диаметр Сциталлы. АРИСТОТЕЛЬ придумал метод вскрытия такого шифра. Он изобрёл дешифровальное устройство “Антисциталла”.

(Слайд 4) Задание “Проверь себя”

(Слайд 5) Греческий писатель ПОЛИБИЙ использовал систему сигнализации, которая применялась как метод шифрования. С его помощью можно было передавать абсолютно любую информацию. Он записывал буквы алфавита в квадратную таблицу и заменял их координатами. Устойчивость этого шифра была велика. Основной причиной этого являлась возможность постоянно менять последовательность букв в квадрате.

(Слайд 6) Задание “Проверь себя”

(Слайд 7) Особую роль в сохранении тайны сыграл способ шифрования, предложенный ЮЛИЕМ ЦЕЗАРЕМ и описанный им в “Записках о галльской войне.

(Слайд 8) Задание “Проверь себя”

(Слайд 9) Существует несколько модификаций шифра Цезаря. Один из них алгоритм шифра Гронсфельда (созданный в 1734 году бельгийцем Хосе де Бронкхором, графом де Гронсфельд, военным и дипломатом). Шифрование заключается в том, что величина сдвига не является постоянной, а задается ключом (гаммой).

(Слайд 10) Для того, кто передаёт шифровку, важна её устойчивость к дешифрованию. Эта характеристика шифра называется криптостойкостью. Повысить криптостойкость позволяют шифры много алфавитной или многозначной замены. В таких шифрах каждому символу открытого алфавита ставятся в соответствие не один, а несколько символов шифровки.

(Слайд 11) Научные методы в криптографии впервые появились в арабских странах. Арабского происхождения и само слово шифр (от арабского "цифра"). Арабы первыми стали заменять буквы цифрами с целью защиты исходного текста. О тайнописи и её значении говорится даже в сказках “Тысячи и одной ночи”. Первая книга, специально посвящённая описанию некоторых шифров, появилась в 855 г., она называлась “Книга о большом стремлении человека разгадать загадки древней письменности”.

(Слайд 12) Итальянский математик и философ ДЖЕРОЛАМО КАРДАНО написал книгу "О тонкостях", в которой имеется часть, посвященная криптографии.

Его вклад в науку криптография содержит два предложения:

Первое - использовать открытый текст в качестве ключа.

Второе - он предложил шифр, называемый ныне "Решетка Кардано".

Кроме данных предложений Кардано дает "доказательство" стойкости шифров, основанное на подсчете числа ключей.

Решётка Кардано представляет собой лист из твердого материала, в котором через неправильные интервалы сделаны прямоугольные вырезы высотой для одной строчки и различной длины. Накладывая эту решетку на лист писчей бумаги, можно было записывать в вырезы секретное сообщение. Оставшиеся места заполнялись произвольным текстом, маскирующим секретное сообщение. Этим методом маскировки пользовались многие известные исторические лица, кардинал Ришелье во Франции и русский дипломат А. Грибоедов. На основе такой решетки Кардано построил шифр перестановки.

(Слайд 13) Задание “Проверь себя”

(Слайд 14) Увлекались тайнописью и в России. Используемые шифры - такие же, как в западных странах - значковые, замены, перестановки.

Датой появления криптографической службы в России следует считать 1549 год (царствование Ивана IV), с момента образования "посольского приказа", в котором имелось "цифирное отделение".

Петр I полностью реорганизовал криптографическую службу, создав "Посольскую канцелярию". В это время применяются для шифрования коды, как приложения к "цифирным азбукам". В знаменитом "деле царевича Алексея" в обвинительных материалах фигурировали и "цифирные азбуки".

(Слайд 15) Задание “Проверь себя”

(Слайд 16) Много новых идей в криптографии принес XIX век. ТОМАС ДЖЕФФЕРСОН создал шифровальную систему, занимающую особое место в истории криптографии - "дисковый шифр". Этот шифр реализовывался с помощью специального устройства, которое впоследствии назвали шифратором Джефферсона.

В 1817 г. ДЕСИУС УОДСВОРТ сконструировал шифровальное устройство, которое внесло новый принцип в криптографию. Нововведение состояло в том, что он сделал алфавиты открытого и шифрованного текстов различных длин. Устройство, с помощью которого он это осуществил, представляло собой диск, с двумя подвижными кольцами с алфавитами. Буквы и цифры внешнего кольца были съемными и могли собираться в любом порядке. Эта шифрсистема реализует периодическую многоалфавитную замену.

(Слайд 17) Способов кодирования информации можно привести много.

Капитан французской армии ШАРЛЬ БАРБЬЕ разработал в 1819 году систему кодирования ecriture noctrume – ночное письмо. В системе применялись выпуклые точки и тире, недостаток системы её сложность, так как кодировались не буквы, а звуки.

ЛУИ БРАЙЛЬ усовершенствовал систему, разработал собственный шифр. Основы этой системы используются поныне.

(Слайд 18) СЭМЮЕЛЬ МОРЗЕ разработал в 1838 году систему кодирования символов с помощью точки и тире. Он же является изобретателем телеграфа (1837год) – устройства в котором использовалась эта система. Самое важное в этом изобретении – двоичный код, то есть использованием для кодирования букв только двух символов.

(Слайд 19) Задание “Проверь себя”

(Слайд 20) В конце XIX века криптография начинает приобретать черты точной науки, а не только искусства, ее начинают изучать в военных академиях. В одной из них был разработан свой собственный военно-полевой шифр, получивший название "Линейка Сен-Сира". Она позволила существенно повысить эффективность труда шифровальщика, облегчить алгоритм реализации шифра Виженера. Именно в этой механизации процессов шифрования-дешифрования и заключается вклад авторов линейки в практическую криптографию.

В истории криптографии XIX в. ярко запечатлелось имя ОГЮСТА КЕРКГОФФСА. В 80-х годах XIX века издал книгу "Военная криптография" объемом всего в 64 страницы, но они обессмертили его имя в истории криптографии. В ней сформулированы 6 конкретных требований к шифрам, два из которых относятся к стойкости шифрования, а остальные - к эксплуатационным качествам. Одно из них ("компрометация системы не должна причинять неудобств корреспондентам") стало называться "правилом Керкгоффса". Все эти требования актуальны и в наши дни.

В XX веке криптография стала электромеханической, затем электронной. Это означает, что основными средствами передачи информации стали электромеханические и электронные устройства.

(Слайд 21) Во второй половине XX века, вслед за развитием элементной базы вычислительной техники, появились электронные шифраторы. Сегодня именно электронные шифраторы составляют подавляющую долю средств шифрования. Они удовлетворяют все возрастающим требованиям по надежности и скорости шифрования.

В семидесятых годах произошло два события, серьезно повлиявших на дальнейшее развитие криптографии. Во-первых, был принят (и опубликован!) первый стандарт шифрования данных (DES), "легализовавший" принцип Керкгоффса в криптографии. Во-вторых, после работы американских математиков У. ДИФФИ и М. ХЕЛЛМАНА родилась "новая криптография"- криптография с открытым ключом.

(Слайд 22) Задание “Проверь себя”

(Слайд 23) Роль криптографии будет возрастать в связи с расширением ее областей приложения:

  • цифровая подпись,
  • аутентификация и подтверждение подлинности и целостности электронных документов,
  • безопасность электронного бизнеса,
  • защита информации, передаваемой через интернет и др.

Знакомство с криптографией потребуется каждому пользователю электронных средств обмена информацией, поэтому криптография в будущем станет "третьей грамотностью" наравне со "второй грамотностью" - владением компьютером и информационными технологиями.

С той самой поры, как человечество доросло до письменной речи, для защиты сообщений используются коды и шифры. Греки и египтяне использовали шифры для защиты личной переписки. Собственно говоря, именно из этой славной традиции и произрастает современная традиция взлома кодов и шифров. Криптоанализ изучает коды и методы их взлома, и это занятие в современных реалиях может принести немало пользы. Если вы хотите этому научиться, то можно начать с изучения самых распространенных шифров и всего, что с ними связано. В общем, читайте эту статью!

Шаги

Расшифровка шифров замещения

    Начните с поиска слов из одной буквы. Большинство шифров на основе относительно простой замены легче всего взломать банальным перебором с подстановкой. Да, придется повозиться, но дальше будет только сложнее.

    • Слова из одной буквы в русском языке - это местоимения и предлоги (я, в, у, о, а). Чтобы найти их, придется внимательно изучить текст. Угадывайте, проверяйте, закрепляйте или пробуйте новые варианты - иного метода разгадки шифра нет.
    • Вы должны научиться читать шифр. Взламывать его - это не столь важно. Учитесь выхватывать шаблоны и правила, лежащие в основе шифра, и тогда его взлом не будет представлять для вас принципиальной сложности.
  1. Ищите наиболее часто употребляемые символы и буквы. К примеру, в английском языке такими являются “e”, “t” и “a”. Работая с шифром, используйте свое знание языка и структуры предложений, на основе чего делайте гипотезы и предположения. Да, на все 100% вы редко будете уверены, но разгадывание шифров - это игра, где от вас требуется делать догадки и исправлять собственные ошибки!

    • Двойные символы и короткие слова ищите в первую очередь, старайтесь начать расшифровку именно с них. Легче, как никак, работать с двумя буквами, чем с 7-10.
  2. Обращайте внимание на апострофы и символы вокруг. Если в тексте есть апострофы, то вам повезло! Так, в случае английского языка, использование апострофа означает, что после зашифрованы такие знаки, как s, t, d, m, ll или re. Соответственно, если после апострофа идут два одинаковых символа, то это наверняка L!

    Попробуйте определить, какой у вас тип шифра. Если вы, разгадывая шифр, в определенный момент поймете, к какому из вышеописанных типов он относится, то вы его практически разгадали. Конечно, такое будет случаться не так уж и часто, но чем больше шифров вы разгадаете, тем проще вам будет потом.

    • Цифровая замена и клавиатурные шифры в наши дни распространены более всего. Работая над шифром, первым делом проверяйте, не такого ли он типа.

    Распознавание обычных шифров

    1. Шифры замещения. Строго говоря, шифры замещения кодируют сообщение, замещая одни буквы другими, согласно заранее определенному алгоритму. Алгоритм - и есть ключ к разгадке шифра, если разгадать его, то и раскодировать сообщение проблемы не составит.

      • Даже если в коде есть цифры, кириллица или латиница, иероглифы или необычные символы - пока используются одни и те же типы символов, то вы, вероятно, работаете именно с шифром замещения. Соответственно, вам надо изучить используемый алфавит и вывести из него правила замещения.
    2. Квадратный шифр. Простейшее шифрование, используемое еще древними греками, работающее на основе использования таблицы цифр, каждая из которых соответствует какой-то букве и из которых впоследствии и составляются слова. Это действительно простой код, своего рода - основа основ. Если вам надо разгадать шифр в виде длинной строки цифр - вероятно, что пригодятся именно методы работы с квадратным шифром.

      Шифр Цезаря. Цезарь умел не только делать три дела одновременно, он еще и понимал в шифровании. Цезарь создал хороший, простой, понятный и, в то же время, устойчивый ко взлому шифр, который в его честь и назвали. Шифр Цезаря - это первый шаг на пути к изучению сложных кодов и шифров. Суть шифра Цезаря в том, что все символы алфавита сдвигаются в одну сторону на определенное количество символов. Например, сдвиг на 3 символа влево будет менять А на Д, Б на Е и т.д.

      Следите за клавиатурными шаблонами. На основе традиционной раскладки клавиатуры типа QWERTY в наше время создаются различные шифры, работающие по принципу смещения и замещения. Буквы смещаются влево, вправо, вверх и вниз на определенное количество символов, что и позволяет создать шифр. В случае таких шифров надо знать, в какую сторону были смещены символы.

      • Так, меняя колонки на одну позицию вверх, “wikihow” превращается в “28i8y92”.
      • Полиалфавитные шифры. Простые замещающие шифры опираются на создание шифрующим своего рода алфавита для шифрования. Но уже в Средние века это стало слишком ненадежно, слишком просто для взлома. Тогда криптография сделала шаг вперед и стала сложнее, начав использовать для шифрования символы сразу нескольких алфавитов. Что и говорить, надежность шифрования сразу повысилась.

    Что значит быть дешифровальщиком

      Будьте терпеливы. Взломать шифр - это терпение, терпение и еще раз терпение. Ну и упорство, конечно же. Это медленная, кропотливая работа, сопряженная с большим количеством разочарования из-за частых ошибок и необходимости постоянно подбирать символы, слова, методы и т.д. Хороший дешифровальщик просто обязан быть терпеливым.

      Пишите собственные шифры. Конечно, криптограммы - это одно, а полиалфавитные шифры без кодовых слов - совсем другое, но все же собственные шифры писать надо. Именно через это занятие вы сможете понять образ мышления тех, кто шифрует сообщения тем или иным образом. Это как “щит и меч” - чем острее меч, тем надежнее щит. Многие дешифровальщики и сами не последние люди в плане составления шифров. Изучайте все более и более сложные методы, учитесь расшифровывать их - и вы достигнете вершин мастерства.

      Решайте известные и до сих пор неразгаданные шифры. ФБР, к примеру, регулярно дает сообществу любителей криптографии пищу для ума, публикуя различные шифры и предлагая всем желающим их разгадать. Решайте их, отправляйте свои ответы… возможно, скоро вы смените работу.

      Наслаждайтесь сложностью работы и атмосферой загадки! Дешифрование - это как если погрузиться в роман Дэна Брауна с головой, но по-настоящему! Сложность, загадочность, предвкушение открытия - все это таинственный и волнующий мир шифров.

    • В английском языке буква “е” используется чаще всех прочих.
    • Если шифр напечатан, то есть шанс, что печатали его специальным шрифтом - типа Windings. И это может быть… двойным шифром!
    • Не опускайте руки, если шифр не поддается уже долгое время. Это нормально.
    • Чем длиннее шифр, тем проще его взломать.
    • Одна буква в шифре вовсе не обязательно соответствует одной букве дешифрованного сообщения. Верно и обратное.
    • Буква в шифре практически никогда не обозначает саму себя (“а” - это не “а”).

Архаичные шифраторы канули в Лету, чего нельзя сказать об алгоритмах шифрования. Операции сдвига, замены и перестановки до сих пор применяются в современных алгоритмах, однако с существенной поправкой в стойкости. За многие столетия, прошедшие со времен первого применения этих шифров, криптографы научились оценивать количество информации, энтропию и стойкость, однако так было не всегда. Рассмотрим подробнее, как работают самые популярные шифры в истории криптографии и в чем их недостатки.

В современном обществе, где почти каждый человек имеет электронный девайс (а то и не один), где каждую минуту совершаются операции с электронной валютой, пересылаются конфиденциальные email, подписываются электронные документы, криптография нужна как воздух. Нужна пользователям, чтобы защитить свою приватность. Нужна программистам, чтобы обеспечить безопасность проектируемых систем. Нужна хакерам, чтобы при аудите понимать уязвимые места в системах. Нужна админам, чтобы представлять, чем и как лучше защищать корпоративные данные. Мы не могли обойти стороной такую важную тему и начинаем цикл статей, посвященный введению в криптoграфию. Для новичков - самый простой путь познакомиться с криптой, для профи - хороший повод систематизировать свои знания. Шесть уроков, от самого простого к сложному. Вперед!

Термины

Для начала давай определимся с терминологией:

  • Криптография - это наука о том, как обеспечить секретность сообщения.
  • Криптоанализ - это наука о том, как вскрыть зашифрованное сообщение, не зная ключа.
  • Дешифровка - это процeсс получения открытого текста средствами криптоанализа.
  • Расшифрование - это процесс получения открытого текста с использованием ключа и алгоритма расшифрования, предусмотренного для данного шифра.

В мире криптографии путаться в этих словах - ужасный моветон.

Зачем мне знания о криптографии?

Предположим, криптография очень нужна, но пусть ей займутся дядьки с усами математики. Зачем же мне знания по криптографии?

Если ты обычный пользователь - то как минимум, чтобы обеспечить свою приватность. Сегодня крупным государствам и влиятельным организациям становятся доступны средства тотального надзора за миллионами людей. Поэтому криптография оказывается важнейшим инструментом, обеспечивающим конфиденциальность, доверие, целостность, авторизацию сообщений и электронных платежей. Повсеместное распространение криптографии останется одним из немногих способов защитить пользователя от угроз, нависающих над его конфиденциальной информацией. Зная, как работает тот или иной протокол или шифр, чем он хорош и где его слабые места, ты сможешь оcознанно выбирать инструменты для работы или просто общения в Сети.

Если ты программист или специалист по ИБ, то здесь вообще от криптографии никуда не скрыться. Любой крупный проект требует обеспечения безопасности информации. Неважно, что ты разрабатываешь: контентный сервис, почтовик, мессенджер, соцсеть или просто интернет-магазин, - везде есть критичные данные, которые надо защищать от перехвата или угона БД. Каждая операция должна быть защищена криптографическими протоколами. В этом случае криптография - подходящий инструмент. Если ты еще с ней не столкнулся, будь уверен - это на 100% лишь вопрос времени.

Короче говоря, криптография используется гораздо чаще, чем можно себе представить. Поэтому пора снять завесу тайны с этой науки, познакомиться с наиболее интересными аспектами и использовать ее возможности себе на пользу.

Зачем изучать старые шифры?

В интернете криптографические протоколы используются практически при каждом запросе. Но как же дело обстояло, когда интернета не было и в помине? Не стоит думать, что в те далекие лохматые времена не было криптографии. Первые способы шифрования появились около четырех тысяч лет назад. Конечно, это были самые примитивные и нестойкие шифры, однако и население тогда было малограмотное, так что такие способы могли защитить информацию от любопытных глаз.

Люди всегда нуждались в секретной переписке, поэтому шифрование не стояло на месте. С раскрытием одних шифров придумывали другие, более стойкие. На смену бумажным шифрам пришли шифровальные машины, которым не было равных среди людей. Даже опытному математику не удавалось взломать шифр, рассчитанный на роторной машине. С появлением первых компьютеров требования к защите информации возросли многократно.

Зачем же нам знакомиться с такими древними и нестойкими шифрами, если можно сразу прочитать про DES и RSA - и вуаля, почти специалист? Изучение первых шифров поможет лучше понять, зачем нужна та или иная операция в современном алгоритме шифрования. Например, шифр перестановки, один из первых примитивных алгоритмов, не был забыт, и перестановка - одна из часто встречающихся операций в современном шифровании. Таким образом, чтобы лучше осознать, откуда на самом деле растут ноги у современных алгоритмов, нужно оглянуться на несколько тысяч лет назад.

Исторические шифры и первые шифраторы

Согласно источникам, первые способы шифрования текста появились вместе с зарождением письменности. Способы тайного письма применялись древними цивилизациями Индии, Месопотамии и Египта. В письменах Древней Индии упоминаются способы изменения текста, которые использовали не только правители, но и ремесленники, желающие скрыть секрет мастерства. Истоком криптографии считается использование специальных иероглифов в древнеегипетской письменности около четырех тысячелетий назад.

Первым шифром, зародившимся в древних цивилизациях и актуальным, в некотором роде, и по сей день, можно считать шифр замены. Чуть позже был придуман шифр сдвига, который применялся Юлием Цезарем, почему и был назван в его честь.

Помимо шифров, нельзя не упомянуть о приборах для шифрования, которые разрабатывали древние математики. Например, скитала - первый шифратор, разработанный в Спарте. Представлял собой палку, на которую по всей длине наматывалась лента пергамента. Текст наносился вдоль оси палки, после чего пергамент снимался, и получалось шифрованное сообщение. Ключом служил диаметр палки. Однако такой способ шифрования был абсолютно нестойким - автором взлома стал Аристотель. Он наматывал ленту пергамента на конусообразную палку до тех пор, пока не появлялись отрывки читаемого текста.

Также ярким примером из мира древних шифраторов может стать диск Энея - диск с отверстиями по количеству букв в алфавите. Нитка протягивалась последовательно в те отверстия, которые соответствовали буквам сообщения. Получатель вытаскивал нитку, записывал последовательность букв и читал секретное послание. Однако этот шифратор обладал существенным недостатком - достать нитку и разгадать послание мог кто угодно.

Шифр сдвига

Это один из самых первых типов шифра. Процесс шифрования очень прост. Он заключается в замене каждой буквы исходного сообщения на другую, отстоящую от исходной на заданное количество позиций в алфавите. Это количество позиций называется ключом. При ключе, равном трем, этот метод называется шифром Цезаря. Император использовал его для секретной переписки. Для того чтобы зашифровать сообщение, нужно построить таблицу подстановок:

a b c d e f g h i j k l m n o p q r s t u v w x y z
d e f g h i j k l m n o p q r s t u v w x y z a b c

Как видишь, во втором ряду символы алфавита сдвинуты на три позиции «назад». Чтобы зашифровать сообщение, для каждого символа исходного текста нужно взять соответствующий ему символ из таблицы подстановки.

Пример шифра

Исходный текст: Hi, Brut! How are you?
Шифрованный текст: Kl, Euxw! Krz duh brx?

Расшифрование

На этапе расшифрования мы имеем шифрованный текст и ключ, равный трем. Чтобы получить исходный текст, ищем для каждого символа сдвиг на три позиции к началу алфавита. Так, для первого символа K сдвиг три будет означать символ H. Далее посимвольно расшифровываем текст, пока не получаем исходную фразу Hi, Brut! How are you? .

Криптоанализ

Легче всего такой шифр взломать простым перебором всех возможных значений ключа - их всего 25. Здесь все просто, и останавливаться смысла нет.

Другой вариант - использовать частотный анализ текста. Для каждого языка есть статистическая информация о частоте употребления каждой буквы алфавита и наиболее часто встречающихся сочетаний букв. Для английского, например, среднестатистические частоты употребления букв таковы:

e 0,12702 s 0,06327 u 0,02758 p 0,01929 q 0,00095
t 0,09056 h 0,06094 m 0,02406 b 0,01492 z 0,00074
a 0,08167 r 0,05987 w 0,02360 v 0,00978
o 0,07507 d 0,04253 f 0,02228 k 0,00772
i 0,06966 l 0,04025 g 0,02015 j 0,00153
n 0,06749 c 0,02782 y 0,01974 x 0,00150

Что касается двухбуквенных сочетаний (биграмм), то можно заметить следующую тенденцию:

Биграмма Процентное содержание Биграмма Процентное содержание
th 3,15 he 2,51
an 1,72 in 1,69
er 1,54 re 1,48
es 1,45 on 1,45
ea 1,31 ti 1,28
at 1,24 st 1,21
en 1,20 nd 1,18

Идея в том, что в зашифрованном тексте самой часто встречаемой буквой будет не эталонная e, а что-то другое. Соответственно, нам нужно найти самую часто встречаемую букву в нашем шифре. Это и будет зашифрованная е. А дальше нужно подсчитать ее сдвиг от е в таблице подстановок. Полученное значение и есть наш ключ!

Шифр замены

Основной недостаток шифра сдвига заключается в том, что есть всего 25 возможных значений ключа. Даже Цезарь начал подозревать, что его шифр не самая лучшая идея. Поэтому на смену ему пришел шифр замены. Для того чтобы воспользоваться этим алгоритмом, создается таблица с исходным алфавитом и, непосредственно под ним, тот же алфавит, но с переставленными буквами (или любой другой набор знаков):

a b c d e f g h i j k l m n o p q r s t u v w x y z
b e x g w i q v l o u m p j r s t n k h f y z a d c

Пример шифра

Действуем аналогично предыдущему шифру. Для каждого символа исходного текста берем соответствующий ему из таблицы подстановки:

Исходный текст: Hi, Brut! How are you?
Шифрованный текст: Vl, Enfh!Vrz bnw drf?

Расшифрование

При расшифровании заменяем каждый символ шифротекста соответствующим символом из известной нам таблицы подстановки: v => h, l => i и так далее. После чего получаем исходную строку Hi, Brut! How are you? .

Криптоанализ

Криптоанализ этого шифра также выполняется методом частотного анализа текста. Рассмотрим пример:

MRJGRJ LK HVW XBSLHBM RI QNWBH ENLHBLJ , LHK SRMLHLXBM , WXRJRPLX , BJG XRPPWNXLBM XWJHNW . LH LK RJW RI HVW MBNQWKH XLHLWK LJ HVW ZRNMG BJG HVW MBNQWKH XLHD LJ WFNRSW . LHK SRSFMBHLRJ LK BERFH 8 PLMMLRJ . MRJGRJ LK GLYLGWG LJHR KWYWNBM SBNHK : HVW XLHD , ZWKHPLJKHWN , HVW ZWKH WJG , BJG HVW WBKH WJG . HVW VWBNH RI MRJGRJ LK HVW XLHD , LHK ILJBJXLBM BJG EFKLJWKK XWJHNW . JFPWNRFK EBJUK , RIILXWK , BJG ILNPK BNW KLHFBHWG HVWNW , LJXMFGLJQ HVW EBJU RI WJQMBJG , HVW KHRXU WAXVBJQW , BJG HVW RMG EBLMWD . IWZ SWRSMW MLYW VWNW , EFH RYWN B PLMMLRJ SWRSMW XRPW HR HVW XLHD HR ZRNU . HVWNW BNW KRPW IBPRFK BJXLWJH EFLMGLJQK ZLHVLJ HVW XLHD . SWNVBSK HVW PRKH KHNLULJQ RI HVWP LK HVW KH . SBFM \ "K XBHVWGNBM , HVW QNWBHWKH RI WJQMLKV XVFNXVWK . LH ZBK EFLMH LJ HVW 17HV XWJHFND ED KLN XVNLKHRSVWN ZNWJ . HVW HRZWN RI MRJGRJ ZBK IRFJGWG ED OFMLFK XBWKBN BJG LJ 1066 NWEFLMH ED ZLMMLBP HVW XRJTFWNRN . LH ZBK FKWG BK B IRNHNWKK , B NRDBM SBMBXW , BJG B SNLKRJ . JRZ LH LK B PFKWFP .

Частотный анализ букв этого шифра показывает следующее (читай построчно, буквы сортированы по частоте использования):

W -88 , H -74 , L -67 , J -55 , B -54 , K -52 ,

R -51 , N -41 , M -36 , V -35 , X -29 , G -27 ,

F -23 , P -16 , S -16 , I -15 , Z -13 , E -13 ,

D -11 , Q -10 , U -5 , Y -4 , T -1 , O -1 ,

A -1

Вероятно, что W => e, так как это самая часто встречающаяся буква в шифре (смотри таблицу среднестатистических частот использования букв для английского языка в предыдущем шифре).

Дальше пробуем найти наиболее короткое слово, куда входит уже известная нам буква W => e. Видим, что сочетание HVW чаще всего встречается в шифре. Нетрудно догадаться, что, скорее всего, это триграмма the, то есть в тексте мы уже определили три символа. Если посмотреть на промежуточный результат, сомнений не остается:

MRJGRJ LK the XBSLtBM RI QNeBt ENLtBLJ , LtK SRMLtLXBM , eXRJRPLX , BJG XRPPeNXLBM XeJtNe . Lt LK RJe RI the MBNQeKt XLtLeK LJ the ZRNMG BJG the MBNQeKt XLtD LJ eFNRSe . LtK SRSFMBtLRJ LK BERFt 8 PLMMLRJ . MRJGRJ LK GLYLGeG LJtR KeYeNBM SBNtK : the XLtD , ZeKtPLJKteN , the ZeKt eJG , BJG the eBKt eJG . the heBNt RI MRJGRJ LK the XLtD , LtK ILJBJXLBM BJG EFKLJeKK XeJtNe . JFPeNRFK EBJUK , RIILXeK , BJG ILNPK BNe KLtFBteG theNe , LJXMFGLJQ the EBJU RI eJQMBJG , the KtRXU eAXhBJQe , BJG the RMG EBLMeD . IeZ SeRSMe MLYe heNe , EFt RYeN B PLMMLRJ SeRSMe XRPe tR the XLtD tR ZRNU . theNe BNe KRPe IBPRFK BJXLeJt EFLMGLJQK ZLthLJ the XLtD . SeNhBSK the PRKt KtNLULJQ RI theP LK the Kt . SBFM \ "K XBtheGNBM , the QNeBteKt RI eJQMLKh XhFNXheK . Lt ZBK EFLMt LJ the 17th XeJtFND ED KLN XhNLKtRSheN ZNeJ . the tRZeN RI MRJGRJ ZBK IRFJGeG ED OFMLFK XBeKBN BJG LJ 1066 NeEFLMt ED ZLMMLBP the XRJTFeNRN . Lt ZBK FKeG BK B IRNtNeKK , B NRDBM SBMBXe , BJG B SNLKRJ . JRZ Lt LK B PFKeFP .

Отлично, уже известны три буквы. Снова ищем наиболее короткие слова с новыми известными нам подстановками. Сочетание it является частоупотребляемым, и, поскольку буква t уже дешифрована (HVW => the), очевидно, что в нашем тексте L => i (LH => it). После этого обращаемся к поиску биграмм is и to, устанавливаем, что K => s, R => o. Затем обращаем внимание на триграммы ~ing и and. Анализ текста показывает, что BJG, скорее всего, шифротекст от and. После замены всех наиболее часто встречающихся символов получаем текст:

Mondon is the XaSitaM oI QNeat ENitain , its SoMitiXaM , eXonoPiX , and XoPPeNXiaM XentNe . it is one oI the MaNQest Xities in the ZoNMd and the MaNQest XitD in eFNoSe . its SoSFMation is aEoFt 8 PiMMion . Mondon is diYided into seYeNaM SaNts : the XitD , ZestPinsteN , the Zest end , and the east end . the heaNt oI Mondon is the XitD , its IinanXiaM and EFsiness XentNe . nFPeNoFs EanUs , oIIiXes , and IiNPs aNe sitFated theNe , inXMFdinQ the EanU oI enQMand , the stoXU eAXhanQe , and the oMd EaiMeD . IeZ SeoSMe MiYe heNe , EFt oYeN a PiMMion SeoSMe XoPe to the XitD to ZoNU . theNe aNe soPe IaPoFs anXient EFiMdinQs Zithin the XitD . SeNhaSs the Post stNiUinQ oI theP is the st . SaFM \ "s XathedNaM , the QNeatest oI enQMish XhFNXhes . it Zas EFiMt in the 17th XentFND ED siN XhNistoSheN ZNen . the toZeN oI Mondon Zas IoFnded ED OFMiFs XaesaN and in 1066 NeEFiMt ED ZiMMiaP the XonTFeNoN . it Zas Fsed as a IoNtNess , a NoDaM SaMaXe , and a SNison . noZ it is a PFseFP .

London is the capital of Great Britain , its political , economic , and commercial centre . It is one of the largest cities in the world and the largest city in Europe . Its population is about 8 million . London is divided into several parts : the City , Westminster , the West End , and the East End . The heart of London is the City , its financial and business centre . Numerous banks , offices , and firms are situated there , including the Bank of England , the Stock Exchange , and the Old Bailey . Few people live here , but over a million people come to the City to work . There are some famous ancient buildings within the City . Perhaps the most striking of them is the St . Paul "s Cathedral , the greatest of English churches . It was built in the 17th century by Sir Christopher Wren . The Tower of London was founded by Julius Caesar and in 1066 rebuilt by William the Conqueror . It was used as a fortress , a royal palace , and a prison . Now it is a museum .

Как видишь, в этом криптоанализе нашим главным инструментом был статистический анализ частот. Идем дальше!

Шифр Рихарда Зорге

Нельзя рассказывать о шифрах и ни слова не сказать о шпионах. В недалеком прошлом, когда компьютеров еще не было, информацию стремились скрыть в основном разведчики. Наука о шифровании не могла стоять на месте, ведь служба Родине была самым важным и нужным ее предназначением. Кстати, именно советские шифры, разработанные отечественными специалистами, на многие десятилетия вперед определили вектор развития криптографии.

Давай разберем довольно известный шифр Рихарда Зорге - советского разведчика, который был направлен в Японию. Этот шифр продуман до мелочей. Шифрование ведется на английском языке. Первоначально нужно составить следующую таблицу:

S U B W A Y
C D E F G H
I J K L M N
O P Q R T V
X Y Z . /

Сначала записываем в нее слово SUBWAY, выбранное нами. Затем пишем все остальные буквы алфавита по порядку. Слеш означает новое слово (разделитель), а точка обозначает себя. Далее наиболее часто встречающиеся буквы английского алфавита (A , S , I , N , T , O , E , R) нумеруются в порядке появления в таблице:

0) S U B W 5) A Y
C D 3) E F G H
1) I J K L M 7) N
2) O P Q 4) R 6) T V
X Y Z . /

Саму таблицу мы строим по горизонтали, записывая буквы рядами, а нумеруем по вертикали, столбцами. Так улучшаются перемешивающие свойства.

Далее таблица преобразуется к следующему виду: сначала в строку по столбцам записываются наиболее часто встречаемые буквы в порядке нумерации (S, I, E, …). А затем записываются и все остальные буквы, также по столбцам в строки (С, X, U, D, J, …). Такая таблица обеспечит хорошие перемешивающие свойства и в то же время не «испортит» частотный анализ шифротекста:

0 1 2 3 4 5 6 7 8 9
- S I O E R A T N - -
8 C X U D J P Z B K Q
9 . W F L / G M Y H V

Таблица готова. Теперь можно зашифровать сообщение.

Пример шифра

Возьмем исходный текст:

Mr . X will fly tomorrow .

Расставим слеши для разделения слов:

Mr . / X / will / fly / tomorrow .

Разобьем текст на блоки по четыре символа (просто для удобства представления):

Mr . / X / wi ll / f ly / t omor row .

Теперь текст нужно зашифровать по нашей таблице. Алгоритм такой:

  1. Для каждого исходного символа ищем соответствующую ему цифру в первом столбце (для M это будет 9).
  2. Для каждого исходного символа ищем соответствующую ему цифру в первом ряду (для M это будет 6).
  3. Записываем полученные символы один за другим (96). Если вместо символа в первом ряду/столбце стоит прочерк, не пишем ничего:96 4 …
    M R …
  4. Переходим к следующему символу. И так далее.

В итоге у нас получится такой шифротекст:

9649094 81 94 911 93939492 9397946 29624 429190

M R . / X / W I L L / F L Y / T OM OR ROW .

После этого шифротекст заново переразбивается на блоки одинаковой длины по пять символов. Оставшиеся символы, которые придутся на последнюю незавершенную группу из пяти символов, можно просто отбросить. Если у нас останется больше двух символов, то их нужно добить нулями до полной группы из пяти. Если один или два - можно отбросить, они не несут особо много информации, и до них легко догадаются в штабе. В нашем случае лишних символов не осталось.

После перегруппировки у нас получится вот такой шифротекст:

96490 94819 49119 39394 92939 79462 96244 29190

Далее нужно наложить на полученный шифротекст некую гамму. Если упрощенно, то гамма - это последовательность чисел, которая выбирается для сложения с исходным шифротекстом. Например, если у нас есть гамма 1234 5678 9876 , а исходный шифротекст выглядел как 12222 14444 1555 , то конечный шифротекст после наложения гаммы выглядит как их сумма - 1234+12222, 14444+5678, 9876+1555 .

Откуда брать гамму и как незаметно передать ее в штаб? Зорге выбирал гамму из «Немецкого статистического ежегодника». Такое издание не должно было вызвать удивление у японцев, так как Зорге приехал в страну под видом немецкого журналиста. Зорге указывал страницу и столбец, откуда начиналась последовательность, которая была наложена на шифротекст в этом послании. Например, 201-я страница и 43-й столбец. Эти данные он записывал добавочным числом 20143 перед шифротекстом, который, в свою очередь, уже шифровался гаммой.

Конечно, сегодня стоит выбирать более известный источник для гаммы. Подойдут любые распространенные табличные данные, не вызывающие подозрения. Но для знакомства с шифром давай все же использовать аутентичный исходник:).

Предположим, мы выбрали 199-ю страницу и четвертую строку, четвертый столбец. Отсюда и начинается нужная гамма:

324 36 380 230 6683 4358 50 2841

В этом случае, чтобы наложить гамму, нужно сделать:

19946 { 96490 + 324 94819 + 36 49119 + 380 39394 + 230 92939 + 6683 79462 + 4358 96244 + 50 29190 + 2841 }

В итоге полученный шифротекст будет:

19946 96814 94855 49499 39624 99622 83820 96294 32031

Расшифрование

В Москве этот текст расшифровывали с помощью аналогичной таблицы. Первым делом анализировалось первое пятизначное число, и в справочнике находилась указанная последовательность гаммы:

{ 96814 - 324 94855 - 36 49499 - 380 39624 - 230 99622 - 6683 83820 - 4358 96294 Mr . X will fly tomorrow

Криптоанализ

Шифр Зорге так и не был взломан вражескими криптоаналитиками. Множество раз японские спецслужбы перехватывали шифротекст, но он так и останется в виде колонок пятизначных чисел, которые подшивались в дела непойманных шпионов.

Шифр Вернама

Во время Первой мировой войны криптологами активно использовался одноразовый шифр-блокнот, или шифр Вернама. Доказано, что он теоретически абсолютно стойкий, однако ключ key должен быть той же длины, что и передаваемое сообщение. Абсолютная стойкость - это свойство, при котором зашифрованное сообщение не поддается криптоанализу, так как не дает злоумышленнику никакой информации об открытом тексте.

Cуть шифра Вернама крайне проста. Для этого нужно вспомнить операцию «исключающее или» или сложение по модулю 2. Итак, для сообщения plaintext шифротекст будет равен:

-- -- - +

G 11011

Во времена Первой мировой войны двоичные коды для символов задавались в Международном телеграфном алфавите № 2 (International Telegraph Alphabet No. 2, ITA2).

На самом деле, несмотря на свою криптостойкость, этот шифр имеет больше минусов, нежели плюсов:

  • в качестве ключа должна быть абсолютно случайная последовательность - вероятно, придется стоять и подбрасывать кубик, чтобы сгенерировать такую;
  • для передачи необходим защищенный канал - сомнительно, что он всегда имелся под рукой во времена Первой мировой войны;
  • если третья сторона сможет каким-то образом узнать послание, она легко и восстановит ключи, и подменит сообщение;
  • требуется надежное уничтожение страницы блокнота - сжечь ее и съесть пепел, тогда враг точно не узнает, что было зашифровано.

Пример шифра

Исходный текст: HELLO
Ключ: AXHJB

Складываем побитово по модулю 2 и ищем, какой букве соответствует полученный код в телеграфном алфавите:

H⊕A = 10100⊕00011 = 10111 => Q
E⊕X = 00001⊕11101 = 11100 => M
L⊕H = 10010⊕10100 = 00110 => I
L⊕J = 10010⊕01011 = 11001 => B
O⊕B = 11000⊕11001 = 00001 => E

Шифрованный текст: QMIBE

Расшифрование

Расшифрование с помощью ключа выполняется аналогично шифровке:

ciphertext⊕key = plaintext

Криптоанализ

При правильном использовании ключа злоумышленник может только угадать символы. Даже при условии, что у него будет неограниченное количество шифротекстов, но все они будут зашифрованы на различных ключах из разных символов, он будет иметь бесконечное множество вариантов исходного текста. При этом догадываться о значении исходного текста можно лишь по количеству символов.

Криптоанализ шифра Вернама легко возможен в том случае, если при шифровании мы выбрали ключ с повторяющимися символами. Если злоумышленнику удалось заполучить несколько текстов с перекрывающимися ключами, он сможет восстановить исходный текст.

Рассмотрим атаку, которая осуществима, если мы дважды при шифровании используем один и тот же ключ. Она называется атака вставки.

Предположим, нам удалось перехватить зашифрованное сообщение QMIVE. Мы пытаемся взломать шифр и убедили отправителя зашифровать свое сообщение еще раз, но при этом поставить первым символом 1 (конечно, отправитель должен быть безмерным простофилей, чтобы выполнить такое условие, но, предположим, мы умеем убеждать).

Тогда мы получаем шифротекст VDYBJY.

Нам известно, что первый символ 1. Я вычисляю первый символ секретного ключа key:

H⊕D = 10100⊕01001 = 11101 => X

Применяем его к первому тексту и получаем:

M⊕X = 11100⊕11101 = 00001 => E

  • складываем символ открытого текста с символом шифротекста => узнаем символ ключа;
  • складываем символ ключа с соответствующим символом шифротекста => получаем символ открытого текста

Такая последовательность операций повторяется, пока не станут известны все символы открытого текста.

Шифровальные машины

Cо временем шифрование вручную стало казаться долгим и малополезным. Криптографы постоянно шифровали, а криптоаналитики в это время отчаянно пытались взломать шифр. Нужно было ускорять и автоматизировать процесс и усложнять алгоритм. Наиболее подходящим для модификации оказался шифр замены. Если текст, зашифрованный этим способом вручную, можно было без особого труда восстановить, то машина могла проделать эту операцию несколько раз, и восстановить текст становилось очень трудно.

Итак, основным механизмом работы шифратора был диск с нанесенными с двух сторон контактами, соответствующими алфавитам открытого и шифрованного текста. Контакты соединялись между собой по некоторому правилу, называемому коммутацией диска. Эта коммутация определяла замену букв при начальном положении диска. При изменении положения диска коммутация менялась и алфавит для шифрования сдвигался.

Пример работы

Пусть начальное положение диска задает подстановку:

a b c d e f g h i j k l m n o p q r s t u v w x y z
b e x g w i q v l o u m p j r s t n k h f y z a d c

После того как первая буква исходного текста заменена, ротор поворачивается и подстановка сдвигается на один символ:

a b c d e f g h i j k l m n o p q r s t u v w x y z
e x g w i q v l o u m p j r s t n k h f y z a d c b

Вторая буква будет зашифрована согласно новому алфавиту. А после ее замены ротор сдвигается вновь, и так далее по количеству символов в исходном шифруемом сообщении.

Энигма

Первой роторной машиной шифрования была «Энигма», состоявшая на вооружении Германии во время Второй мировой войны. Она имела три ротора, связанных между собой. При повороте первого ротора соединенное с ним кольцо попадает в паз второго диска и толкает его. Аналогично итерации третьего ротора контролируются вторым ротором. В итоге при каждом нажатии на клавишу машины одна и та же буква кодируется совершенно разными значениями.

При шифровании необходимо было учитывать начальное положение роторов, их порядок и положения колец. Для двойной замены букв используется штекерная панель. Рефлектор осуществляет завершающую подстановку для контроля соответствия между операциями зашифрования и расшифрования. Взгляни на конструкцию «Энигмы»:

На рисунке жирной линией выделено, как буква A вводится с клавиатуры, кодируется штекером, проходит через три ротора, заменяется на рефлекторе и выходит зашифрованной буквой D.

«Энигма» долгое время считалась неуязвимой. Немцы ежедневно меняли положение штекеров, диски и их компоновку и положение. Во время военных действий они ежедневно кодировали короткую последовательность букв, которая шифровалась дважды и передавалась в самом начале сообщения. Адресат дешифровал ключ и устанавливал настройки машины согласно этому ключу. Именно это многократное использование одного и того же ключа позволило аналитикам из Блетчли-Парка (главного шифровального подразделения Великобритании) взломать немецкий шифр.

На самом деле механизм «Энигмы» не является стойким, так как штекеры и рефлектор выполняют взаимоисключающие операции. Пользуясь частотным анализом для достаточно большого шифротекста, можно подобрать положение роторов брутфорсом. Именно из-за этих уязвимостей «Энигма» остается лишь экспонатом в музее Блетчли-Парка.

Сигаба

Спустя десять лет американскими военными была разработана роторная шифровальная машина «Сигаба», которая значительно превзошла по характеристикам свою прародительницу. «Сигаба» имеет три блока по пять роторов и печатающий механизм. Шифрование на этой машине использовалось американскими военными и военно-морским флотом вплоть до 1950-х годов, пока ее не сменила более новая модификация KL-7. Как известно, эта роторная машина так и не была взломана.

Purple

Говоря о знаменитых криптографических механизмах, нельзя не упомянуть о японской шифровальной машине Purplе, как ее назвали американцы. Шифрование в Purple также основывалось на движении четырех роторов, а секретный ключ задавался один раз в день. Текст вводился с клавиатуры, при помощи роторов заменялся на шифрованный и выводился напечатанным на бумаге. При расшифровании процесс последовательного прохождения через роторы повторялся в обратном порядке. Такая система является совершенно стойкой. Однако на практике ошибки при выборе ключей привели к тому, что Purple повторила судьбу немецкой «Энигмы». Она была взломана американским отделом криптоаналитиков.

Выводы

Опыт истории криптографии показывает нам значимость выбора секретного ключа и частоты смены ключа. Ошибки в этом тяжелом процессе превращают любую систему шифрования в менее стойкую, чем она могла бы быть. В следующий раз поговорим про распределение ключей.

ссылки:

Это первый урок из цикла «Погружение в крипту». Все уроки цикла в хронологическом порядке:

  • Уроки криптографии. Основные шифры. часть 1. Основы, исторические шифраторы, как работают (и анализируются) шифры сдвига, замены, Рихарда Зорге, шифр Вернама и шифровальные машины (ты здесь)
  • . часть 2. Что это такое, как выполняется распределение ключей и как выбрать криптостойкий ключ
  • Что тaкое сеть Фейстеля, какими бывают отечественные блочные шифры, используемые в современных протоколах, - ГОСТ 28147-89, «Кузнечик»
  • Урок 4. Современные зарубежные шифры . Что такое, как работают и в чем разница между 3DES, AES, Blowfish, IDEA, Threefish от Брюса Шнайдера
  • Урок 5. Электронная подпись . Виды ЭП, как они работают и как их использовать
  • Урок 6. Квантовая криптография . Что это такое, где используется и как помогает в распределении секретных ключей, генерации случайных чисел и электронной подписи

[Всего голосов: 7 Средний: 4.1/5]

Last updated by at Июнь 28, 2016 .

Тема: "Криптография. Шифры, их виды и свойства"


Введение

1. История криптографии

2. Шифры, их виды и свойства

Заключение

Список литературы


Введение

То, что информация имеет ценность, люди осознали очень давно - недаром переписка сильных мира сего издавна была объектом пристального внимания их недругов и друзей. Тогда-то и возникла задача защиты этой переписки от чрезмерно любопытных глаз. Древние пытались использовать для решения этой задачи самые разнообразные методы, и одним из них была тайнопись - умение составлять сообщения таким образом, чтобы его смысл был недоступен никому кроме посвященных в тайну. Есть свидетельства тому, что искусство тайнописи зародилось еще в доантичные времена. На протяжении всей своей многовековой истории, вплоть до совсем недавнего времени, это искусство служило немногим, в основном верхушке общества, не выходя за пределы резиденций глав государств, посольств и - конечно же - разведывательных миссий. И лишь несколько десятилетий назад все изменилось коренным образом - информация приобрела самостоятельную коммерческую ценность и стала широко распространенным, почти обычным товаром. Ее производят, хранят, транспортируют, продают и покупают, а значит - воруют и подделывают - и, следовательно, ее необходимо защищать. Современное общество все в большей степени становится информационно обусловленным, успех любого вида деятельности все сильней зависит от обладания определенными сведениями и от отсутствия их у конкурентов. И чем сильней проявляется указанный эффект, тем больше потенциальные убытки от злоупотреблений в информационной сфере, и тем больше потребность в защите информации.

Широкое применение компьютерных технологий и постоянное увеличение объема информационных потоков вызывает постоянный рост интереса к криптографии. В последнее время увеличивается роль программных средств защиты информации, не требующих крупных финансовых затрат в сравнении с аппаратными криптосистемами. Современные методы шифрования гарантируют практически абсолютную защиту данных.

Целью данной работы является знакомство с криптографией; шифрами, их видами и свойствами.

Ознакомиться с криптографией

Рассмотреть шифры, их виды и свойства


1. История криптографии

Перед тем как приступить к собственно истории криптографии необходимо прокомментировать ряд определений, так как без этого все нижесказанное будет "слегка" затруднительным для понимания:

Под конфиденциальностью понимают невозможность получения информации из преобразованного массива без знания дополнительной информации (ключа).

Аутентичность информации состоит в подлинности авторства и целостности.

Криптоанализ объединяет математические методы нарушения конфиденциальности и аутентичности информации без знания ключей.

Алфавит - конечное множество используемых для кодирования информации знаков.

Текст - упорядоченный набор из элементов алфавита. В качестве примеров алфавитов можно привести следующие:

алфавит Z 33 - 32 буквы русского алфавита (исключая "ё") и пробел;

алфавит Z 256 - символы, входящие в стандартные коды ASCII и КОИ-8;

двоичный алфавит - Z 2 = {0, 1};

восьмеричный или шестнадцатеричный алфавит

Под шифром понимается совокупность обратимых преобразований множества открытых данных на множество зашифрованных данных, заданных алгоритмом криптографического преобразования. В шифре всегда различают два элемента: алгоритм и ключ. Алгоритм позволяет использовать сравнительно короткий ключ для шифрования сколь угодно большого текста.

Криптографическая система, или шифр представляет собой семейство Т обратимых преобразований открытого текста в шифрованный. Членам этого семейства можно взаимно однозначно сопоставить число k, называемое ключом. Преобразование Тk определяется соответствующим алгоритмом и значением ключа k.

Ключ - конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования данных, обеспечивающее выбор одного варианта из совокупности всевозможных для данного алгоритма. Секретность ключа должна обеспечивать невозможность восстановления исходного текста по шифрованному.

Пространство ключей K - это набор возможных значений ключа.

Обычно ключ представляет собой последовательный ряд букв алфавита. Следует отличать понятия "ключ" и "пароль". Пароль также является секретной последовательностью букв алфавита, однако используется не для шифрования (как ключ), а для аутентификации субъектов.

Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и целостность сообщения.

Зашифрованием данных называется процесс преобразования открытых данных в зашифрованные с помощью шифра, а расшифрованием данных - процесс преобразования закрытых данных в открытые с помощью шифра.

Дешифрованием называется процесс преобразования закрытых данных в открытые при неизвестном ключе и, возможно, неизвестном алгоритме, т.е. методами криптоанализа.

Шифрованием называется процесс зашифрования или расшифрования данных. Также термин шифрование используется как синоним зашифрования. Однако неверно в качестве синонима шифрования использовать термин "кодирование" (а вместо "шифра" - "код"), так как под кодированием обычно понимают представление информации в виде знаков (букв алфавита).

Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию. Обычно эта характеристика определяется периодом времени, необходимым для дешифрования.

С распространением письменности в человеческом обществе появилась потребность в обмене письмами и сообщениями, что вызвало необходимость сокрытия содержимого письменных сообщений от посторонних. Методы сокрытия содержимого письменных сообщений можно разделить на три группы. К первой группе относятся методы маскировки или стеганографии, которые осуществляют сокрытие самого факта наличия сообщения; вторую группу составляют различные методы тайнописи или криптографии (от греческих слов ktyptos - тайный и grapho - пишу); методы третьей группы ориентированы на создание специальных технических устройств, засекречивания информации.

В истории криптографии условно можно выделить четыре этапа: наивный, формальный, научный, компьютерный.

1. Для наивной криптографии (до начала XVI в) характерно использование любых, обычно примитивных, способов запутывания противника относительно содержания шифруемых текстов. На начальном этапе для защиты информации использовались методы кодирования и стеганографии, которые родственны, но не тождественны криптографии.

Большинство из используемых шифров сводились к перестановке или моноалфавитной подстановке. Одним из первых зафиксированных примеров является шифр Цезаря, состоящий в замене каждой буквы исходного текста на другую, отстоящую от нее в алфавите на определенное число позиций. Другой шифр, полибианский квадрат, авторство которого приписывается греческому писателю Полибию, является общей моноалфавитной подстановкой, которая проводится с помощью случайно заполненной алфавитом квадратной таблицей (для греческого алфавита размер составляет 5 × 5). Каждая буква исходного текста заменяется на букву, стоящую в квадрате снизу от нее.

2. Этап формальной криптографии (конец XV - начало XX вв) связан с появлением формализованных и относительно стойких к ручному криптоанализу шифров. В европейских странах это произошло в эпоху Возрождения, когда развитие науки и торговли вызвало спрос на надежные способы защиты информации. Важная роль на этом этапе принадлежит Леону Батисте Альберти, итальянскому архитектору, который одним из первых предложил многоалфавитную подстановку. Данный шифр, получивший имя дипломата XVI в. Блеза Вижинера, состоял в последовательном "сложении" букв исходного текста с ключом (процедуру можно облегчить с помощью специальной таблицы). Его работа "Трактат о шифре" считается первой научной работой по криптологии. Одной из первых печатных работ, в которой обобщены и сформулированы известные на тот момент алгоритмы шифрования, является труд "Полиграфия" немецкого аббата Иоганна Трисемуса. Ему принадлежат два небольших, но важных открытия: способ заполнения полибианского квадрата (первые позиции заполняются с помощью легко запоминаемого ключевого слова, остальные - оставшимися буквами алфавита) и шифрование пар букв (биграмм). Простым, но стойким способом многоалфавитной замены (подстановки биграмм) является шифр Плейфера, который был открыт в начале XIX в. Чарльзом Уитстоном. Уитстону принадлежит и важное усовершенствование - шифрование "двойным квадратом". Шифры Плейфера и Уитстона использовались вплоть до первой мировой войны, так как с трудом поддавались ручному криптоанализу. В XIX в. голландец Керкхофф сформулировал главное требование к криптографическим системам, которое остается актуальным и поныне: секретность шифров должна быть основана на секретности ключа, но не алгоритма.

Наконец, последним словом в донаучной криптографии, которое обеспечило еще более высокую криптостойкость, а также позволило автоматизировать процесс шифрования стали роторные криптосистемы.

Одной из первых подобных систем стала изобретенная в 1790 г. Томасом Джефферсоном механическая машина. Многоалфавитная подстановка с помощью роторной машины реализуется вариацией взаимного положения вращающихся роторов, каждый из которых осуществляет "прошитую" в нем подстановку.

Практическое распространение роторные машины получили только в начале XX в. Одной из первых практически используемых машин, стала немецкая Enigma, разработанная в 1917 г. Эдвардом Хеберном и усовершенствованная Артуром Кирхом. Роторные машины активно использовались во время второй мировой войны. Помимо немецкой машины Enigma использовались также устройства Sigaba (США), Турех (Великобритания), Red, Orange и Purple (Япония). Роторные системы - вершина формальной криптографии, так как относительно просто реализовывали очень стойкие шифры. Успешные криптоатаки на роторные системы стали возможны только с появлением ЭВМ в начале 40-х гг.

3. Главная отличительная черта научной криптографии (1930 - 60-е гг.) - появление криптосистем со строгим математическим обоснованием криптостойкости. К началу 30-х гг. окончательно сформировались разделы математики, являющиеся научной основой криптологии: теория вероятностей и математическая статистика, общая алгебра, теория чисел, начали активно развиваться теория алгоритмов, теория информации, кибернетика. Своеобразным водоразделом стала работа Клода Шеннона "Теория связи в секретных системах", которая подвела научную базу под криптографию и криптоанализ. С этого времени стали говорить о криптологии (от греческого kryptos - тайный и logos - сообщение) - науке о преобразовании информации для обеспечения ее секретности. Этап развития криптографии и криптоанализа до 1949 г. стали называть донаучной криптологией.

Шеннон ввел понятия "рассеивание" и "перемешивание", обосновал возможность создания сколь угодно стойких криптосистем. В 1960-х гг. ведущие криптографические школы подошли к созданию блочных шифров, еще более стойких по сравнению с роторными криптосистемами, однако допускающих практическую реализацию только в виде цифровых электронных устройств.

4. Компьютерная криптография (с 1970-х гг.) обязана своим появлением вычислительным средствам с производительностью, достаточной для реализации криптосистем, обеспечивающих при большой скорости шифрования на несколько порядков более высокую криптостойкость, чем "ручные" и "механические" шифры.

Первым классом криптосистем, практическое применение которых стало возможно с появлением мощных и компактных вычислительных средств, стали блочные шифры. В 70-е гг. был разработан американский стандарт шифрования DES. Один из его авторов, Хорст Фейстель описал модель блочных шифров, на основе которой были построены другие, более стойкие симметричные криптосистемы, в том числе отечественный стандарт шифрования ГОСТ 28147-89.

С появлением DES обогатился и криптоанализ, для атак на американский алгоритм был создано несколько новых видов криптоанализа (линейный, дифференциальный и т.д.), практическая реализация которых опять же была возможна только с появлением мощных вычислительных систем. В середине 70-х гг. ХХ столетия произошел настоящий прорыв в современной криптографии - появление асимметричных криптосистем, которые не требовали передачи секретного ключа между сторонами. Здесь отправной точкой принято считать работу, опубликованную Уитфилдом Диффи и Мартином Хеллманом в 1976 г. под названием "Новые направления в современной криптографии". В ней впервые сформулированы принципы обмена шифрованной информацией без обмена секретным ключом. Независимо к идее асимметричных криптосистем подошел Ральф Меркли. Несколькими годами позже Рон Ривест, Ади Шамир и Леонард Адлеман открыли систему RSA, первую практическую асимметричную криптосистему, стойкость которой была основана на проблеме факторизации больших простых чисел. Асимметричная криптография открыла сразу несколько новых прикладных направлений, в частности системы электронной цифровой подписи (ЭЦП) и электронных денег.

В 1980-90-е гг. появились совершенно новые направления криптографии: вероятностное шифрование, квантовая криптография и другие. Осознание их практической ценности еще впереди. Актуальной остается и задача совершенствования симметричных криптосистем. В этот же период были разработаны нефейстелевские шифры (SAFER, RC6 и др.), а в 2000 г. после открытого международного конкурса был принят новый национальный стандарт шифрования США - AES.

Таким образом, мы узнали следующее:

Криптология - это наука о преобразовании информации для обеспечения ее секретности, состоящая из двух ветвей: криптографии и криптоанализа.

Криптоанализ - наука (и практика ее применения) о методах и способах вскрытия шифров.

Криптография - наука о способах преобразования (шифрования) информации с целью ее защиты от незаконных пользователей. Исторически первой задачей криптографии была защита передаваемых текстовых сообщений от несанкционированного ознакомления с их содержанием, известного только отправителю и получателю, все методы шифрования являются лишь развитием этой философской идеи. С усложнением информационных взаимодействий в человеческом обществе возникли и продолжают возникать новые задачи по их защите, некоторые из них были решены в рамках криптографии, что потребовало развития новых подходов и методов.


2. Шифры, их виды и свойства

В криптографии криптографические системы (или шифры) классифицируются следующим образом:

симметричные криптосистемы

асимметричные криптосистемы

2.1 Симметричные криптографические системы

Под симметричными криптографическими системами понимаются такие криптосистемы, в которых для шифрования и расшифрования используется один и тот же ключ, хранящийся в секрете. Все многообразие симметричных криптосистем основывается на следующих базовых классах:

I. Моно - и многоалфавитные подстановки.

Моноалфавитные подстановки - это наиболее простой вид преобразований, заключающийся в замене символов исходного текста на другие (того же алфавита) по более или менее сложному правилу. В случае моноалфавитных подстановок каждый символ исходного текста преобразуется в символ шифрованного текста по одному и тому же закону. При многоалфавитной подстановке закон преобразования меняется от символа к символу. Один и тот же шифр может рассматриваться и как моно - и как многоалфавитный в зависимости от определяемого алфавита.

Например, самой простой разновидностью является прямая (простая) замена, когда буквы шифруемого сообщения заменяются другими буквами того же самого или некоторого другого алфавита. Таблица замены может иметь следующий вид:


Исходные символы шифруемого текста а б в г д е ж з и к л м н о п р с т у ф
Заменяющие символы s р x l r z i m a y e d w t b g v n j o

Используя эту таблицу, зашифруем слово победа. Получим следующее: btpzrs

II. Перестановки - также несложный метод криптографического преобразования, заключающийся в перестановке местами символов исходного текста по некоторому правилу. Шифры перестановок в настоящее время не используются в чистом виде, так как их криптостойкость недостаточна, но они входят в качестве элемента в очень многие современные криптосистемы.

Самая простая перестановка - написать исходный текст наоборот и одновременно разбить шифрограмму на пятерки букв. Например, из фразы

ПУСТЬ БУДЕТ ТАК, КАК МЫ ХОТЕЛИ

получится такой шифротекст:

ИЛЕТО ХЫМКА ККАТТ ЕДУБЪ ТСУП

В последней пятерке не хватает одной буквы. Значит, прежде чем шифровать исходное выражение, следует его дополнить незначащей буквой (например, О) до числа, кратного пяти, тогда шифрограмма, несмотря на столь незначительные изменения, будет выглядеть по-другому:

ОИЛЕТ ОХЫМК АККАТ ТЕДУБ ЬТСУП

III. Блочные шифры - семейство обратимых преобразований блоков (частей фиксированной длины) исходного текста. Фактически блочный шифр - это система подстановки на алфавите блоков. Она может быть моно - или многоалфавитной в зависимости от режима блочного шифра. Иначе говоря, при блочном шифровании информация разбивается на блоки фиксированной длины и шифруется поблочно. Блочные шифры бывают двух основных видов: шифры перестановки (transposition, permutation, P-блоки) и шифры замены (подстановки, substitution, S-блоки) . В настоящее время блочные шифры наиболее распространены на практике.

Американский стандарт криптографического закрытия данных DES (Data Encryption Standard), принятый в 1978 г., является типичным представителем семейства блочных шифров и одним из наиболее распространенных криптографических стандартов на шифрование данных, применяемых в США. Этот шифр допускает эффективную аппаратную и программную реализацию, причем возможно достижение скоростей шифрования до нескольких мегабайт в секунду. Первоначально метод, лежащий в основе данного стандарта, был разработан фирмой IBM для своих целей. Он был проверен Агентством Национальной Безопасности США, которое не обнаружило в нем статистических или математических изъянов.

DES имеет блоки по 64 бит и основан на 16-кратной перестановке данных, также для шифрования использует ключ в 56 бит. Существует несколько режимов DES: Electronic Code Book (ECB) и Cipher Block Chaining (CBC).56 бит - это 8 семибитовых символов, т.е. пароль не может быть больше чем восемь букв. Если вдобавок использовать только буквы и цифры, то количество возможных вариантов будет существенно меньше максимально возможных 2 56 . Однако, данный алгоритм, являясь первым опытом стандарта шифрования, имеет ряд недостатков. За время, прошедшее после создания DES, компьютерная техника развилась настолько быстро, что оказалось возможным осуществлять исчерпывающий перебор ключей и тем самым раскрывать шифр. В 1998 г. была построена машина, способная восстановить ключ за среднее время в трое суток. Таким образом, DES, при его использовании стандартным образом, уже стал далеко не оптимальным выбором для удовлетворения требованиям скрытности данных. Позднее стали появляться модификации DESa, одной из которой является Triple Des ("тройной DES" - так как трижды шифрует информацию обычным DESом). Он свободен от основного недостатка прежнего варианта - короткого ключа: он здесь в два раза длиннее. Но зато, как оказалось, Triple DES унаследовал другие слабые стороны своего предшественника: отсутствие возможности для параллельных вычислений при шифровании и низкую скорость.

IV. Гаммирование - преобразование исходного текста, при котором символы исходного текста складываются с символами псевдослучайной последовательности (гамме), вырабатываемой по некоторому правилу. В качестве гаммы может быть использована любая последовательность случайных символов. Процедуру наложения гаммы на исходный текст можно осуществить двумя способами. При первом способе символы исходного текста и гаммы заменяются цифровыми эквивалентами, которые затем складываются по модулю k, где k - число символов в алфавите. При втором методе символы исходного текста и гаммы представляются в виде двоичного кода, затем соответствующие разряды складываются по модулю 2. Вместо сложения по модулю 2 при гаммировании можно использовать и другие логические операции.

Таким образом, симметричными криптографическими системами являются криптосистемы, в которых для шифрования и расшифрования используется один и тот же ключ. Достаточно эффективным средством повышения стойкости шифрования является комбинированное использование нескольких различных способов шифрования. Основным недостатком симметричного шифрования является то, что секретный ключ должен быть известен и отправителю, и получателю.

2.2 Асимметричные криптографические системы

Еще одним обширным классом криптографических систем являются так называемые асимметричные или двухключевые системы. Эти системы характеризуются тем, что для шифрования и для расшифрования используются разные ключи, связанные между собой некоторой зависимостью. Применение таких шифров стало возможным благодаря К. Шеннону, предложившему строить шифр таким способом, чтобы его раскрытие было эквивалентно решению математической задачи, требующей выполнения объемов вычислений, превосходящих возможности современных ЭВМ (например, операции с большими простыми числами и их произведениями). Один из ключей (например, ключ шифрования) может быть сделан общедоступным, и в этом случае проблема получения общего секретного ключа для связи отпадает. Если сделать общедоступным ключ расшифрования, то на базе полученной системы можно построить систему аутентификации передаваемых сообщений. Поскольку в большинстве случаев один ключ из пары делается общедоступным, такие системы получили также название криптосистем с открытым ключом. Первый ключ не является секретным и может быть опубликован для использования всеми пользователями системы, которые зашифровывают данные. Расшифрование данных с помощью известного ключа невозможно. Для расшифрования данных получатель зашифрованной информации использует второй ключ, который является секретным. Разумеется, ключ расшифрования не может быть определен из ключа зашифрования.

Центральным понятием в асимметричных криптографических системах является понятие односторонней функции.

Под односторонней функцией понимается эффективно вычислимая функция, для обращения которой (т.е. для поиска хотя бы одного значения аргумента по заданному значению функции) не существует эффективных алгоритмов.

Функцией-ловушкой называется односторонняя функция, для которой обратную функцию вычислить просто, если имеется некоторая дополнительная информация, и сложно, если такая информация отсутствует.

Все шифры этого класса основаны на так называемых функциях-ловушках. Примером такой функции может служить операция умножения. Вычислить произведение двух целых чисел очень просто, однако эффективных алгоритмов для выполнения обратной операции (разложения числа на целые сомножители) - не существует. Обратное преобразование возможно лишь, если известна, какая-то дополнительная информация.

В криптографии очень часто используются и так называемые хэш-функции. Хэш-функции - это односторонние функции, которые предназначены для контроля целостности данных. При передаче информации на стороне отправителя она хешируется, хэш передается получателю вместе с сообщением, и получатель вычисляет хэш этой информации повторно. Если оба хэша совпали, то это означает, что информация была передана без искажений. Тема хэш-функций достаточно обширна и интересна. И область ее применения гораздо больше чем просто криптография.

В настоящее время наиболее развитым методом криптографической защиты информации с известным ключом является RSA, названный так по начальным буквам фамилий его изобретателей (Rivest, Shamir и Adleman) и представляющий собой криптосистему, стойкость которой основана на сложности решения задачи разложения числа на простые сомножители. Простыми называются такие числа, которые не имеют делителей, кроме самих себя и единицы. А взаимно простыми называются числа, не имеющие общих делителей, кроме 1.

Для примера выберем два очень больших простых числа (большие исходные числа нужны для построения больших криптостойких ключей). Определим параметр n как результат перемножения р и q. Выберем большое случайное число и назовем его d, причем оно должно быть взаимно простым с результатом умножения (р - 1) * (q - 1). Найдем такое число e, для которого верно соотношение:

(e*d) mod ((р - 1) * (q - 1)) = 1

(mod - остаток от деления, т.е. если e, умноженное на d, поделить на ((р - 1) * (q - 1)), то в остатке получим 1).

Открытым ключом является пара чисел e и n, а закрытым - d и n. При шифровании исходный текст рассматривается как числовой ряд, и над каждым его числом мы совершаем операцию:

C (i) = (M (i) e) mod n

В результате получается последовательность C (i), которая и составит криптотекст.д.екодирование информации происходит по формуле

M (i) = (C (i) d) mod n

Как видите, расшифровка предполагает знание секретного ключа.

Попробуем на маленьких числах. Установим р=3, q=7. Тогда n=р*q=21. Выбираем d как 5. Из формулы (e*5) mod 12=1 вычисляем e=17. Открытый ключ 17, 21, секретный - 5, 21.

Зашифруем последовательность "2345":

C (2) = 2 17 mod 21 =11

C (3) = 3 17 mod 21= 12

C (4) = 4 17 mod 21= 16

C (5) = 5 17 mod 21= 17

Криптотекст - 11 12 16 17.

Проверим расшифровкой:

M (2) = 11 5 mod 21= 2

M (3) = 12 5 mod 21= 3

M (4) = 16 5 mod 21= 4

M (5) = 17 5 mod 21= 5

Как видим, результат совпал.

Криптосистема RSA широко применяется в Интернете. Когда пользователь подсоединяется к защищенному серверу, то здесь применяется шифрование открытым ключом с использованием идей алгоритма RSA. Криптостойкость RSA основывается на том предположении, что исключительно трудно, если вообще реально, определить закрытый ключ из открытого. Для этого требовалось решить задачу о существовании делителей огромного целого числа. До сих пор ее аналитическими методами никто не решил, и алгоритм RSA можно взломать лишь путем полного перебора.

Таким образом, асимметричные криптографические системы - это системы, в которых для шифрования и для расшифрования используются разные ключи. Один из ключей даже может быть сделан общедоступным. При этом расшифрование данных с помощью известного ключа невозможно.


Заключение

Криптография - наука о математических методах обеспечения конфиденциальности (невозможности прочтения информации посторонним) и аутентичности (целостности и подлинности авторства, а также невозможности отказа от авторства) информации. Изначально криптография изучала методы шифрования информации - обратимого преобразования открытого (исходного) текста на основе секретного алгоритма и ключа в шифрованный текст. Традиционная криптография образует раздел симметричных криптосистем, в которых зашифрование и расшифрование проводится с использованием одного и того же секретного ключа. Помимо этого раздела современная криптография включает в себя асимметричные криптосистемы, системы электронной цифровой подписи (ЭЦП), хеш-функции, управление ключами, получение скрытой информации, квантовую криптографию.

Криптография является одним из наиболее мощных средств обеспечения конфиденциальности и контроля целостности информации. Во многих отношениях она занимает центральное место среди программно-технических регуляторов безопасности. Например, для портативных компьютеров, физически защитить которые крайне трудно, только криптография позволяет гарантировать конфиденциальность информации даже в случае кражи.


Список литературы

1. Златопольский Д.М. Простейшие методы шифрования текста. /Д.М. Златопольский - М.: Чистые пруды, 2007

2. Молдовян А. Криптография. /А. Молдовян, Н.А. Молдовян, Б.Я. Советов - СПб: Лань, 2001

3. Яковлев А.В., Безбогов А.А., Родин В.В., Шамкин В.Н. Криптографическая защита информации. /Учебное пособие - Тамбов: Изд-во Тамб. гос. техн. ун-та, 2006

4. http://ru. wikipedia.org

5. http://cryptoblog.ru

6. http://Stfw.ru

7. http://www.contrterror. tsure.ru


Молдовян А. Криптография./А. Молдовян, Н. А. Молдовян, Б. Я. Советов – СПб: Лань, 2001

Действий в сфере информационных технологий. Таким образом, можно считать актуальным и значительным старших классов изучение элективного курса «Компьютерная и информационная безопасность» в образовательной области «Информатика». Курс ориентирован на подготовку подрастающего поколения к жизни и деятельности в совершенно новых условиях информационного общества, в котором вопросы обеспечения...

Понравилась статья? Поделитесь ей